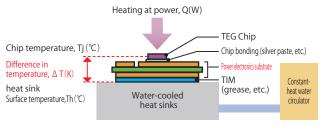
Thermal Analyzer

Thermal Evaluation of Metallized Ceramic Substrates

TE100

Sampling 100 sampling/ rate sec (max) Temperature characteristics Resolution ≥ 0.01°C

Electrical resistance ±0.1mΩ (range 70-13

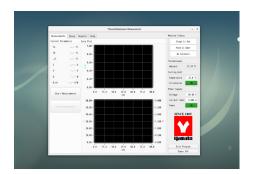

- Evaluates thermal characteristics (thermal resistance) of power device substrates
- Capable of evaluating heat dissipation characteristics due to module structure
- Capable of measuring and evaluating heat dissipation characteristics of individual substarte materials
- Evaluated according to "International Organization for Standardization ISO 4825-1:2023"

Effective thermal resistance of power electronics board, Rth(K/W)

Can be calculated from chip temperature, heatsink surface temperature, and applied power

Thermal Resistance Calculation Method

Formula: $R_{th} = \Delta T / Q$


Equipment Configuration

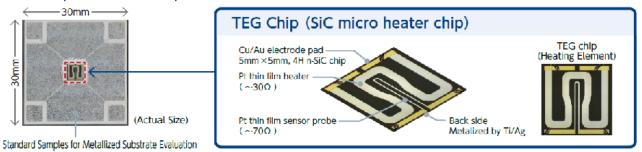
* Monitor, keyboard and mouse to be provided by the user

ANALYSIS SYSTEM (SOFTWARE) AS STANDARD

- Simple operation screen with "Setting", "Measurement", "Result", and "Help"
- Centralized Heating of TEG Chips and cooling by CFA302 Water Circulator

SPECIFICATION OF TE100

Compatible specimen size (ISO4825-1:2023)		30 x 30 mm
Specimen load		10 kg
Temperature characteristics		Resolution ≥ 0.01°C
Electrical resistance measurement error		±0.1mΩ (70 ~ 130Ω)
Sampling rate		100 sampling/sec (max)
Supply voltage		AC100V 50/60Hz
Size	Controller	W380 × D470 × H180mm
	Measurement unit	W380 × D400 × H320mm


ISO 4825-1:2023

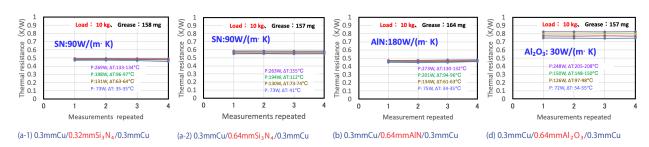
Fine ceramics (advanced ceramics, advanced technical ceramics) -Test method for thermal property
measurements of metalized ceramic substrates
Part 1: Evaluation of thermal resistance for use in power modules.

TEG CHIP (CONSUMABLE)

The TEG Chip is Attached to a Sample for Evaluation, such as a Metallized Substrate.

SPECIFICATION OF TEG CHIP

Heat generation intensity	1KW / cm²
Maximum input power	about 250W.
Temperature increase rate	1.4×10⁴K/sec
Size	W5×D5×H0.35mm


SPECIFICATION OF CIRCULATOR CFA302

Circulation Method	External Closed System Circulation
Cooling Method	Air cooling
Temperature control range	- 10 ~ 60°C
Power supply	AC100V 13.8A
Size	W380×D565×H725mm

Thermal property measurements with good reproducibility

Determine slight differences in thermal resistance due to ceramic materials and thicknesses

What are the target markets for TE100?

- Power semiconductors, such as for automotive, electrical, and railroad applications. It contributes to high thermal conductivity design of semiconductors.
- Ceramic substrate manufacturer
- Heat transfer material manufacturer (grease, heat transfer sheets)
- Diamond attach bonding material manufacturer
- Heat sink manufacturer

Is TE100 only applicable to metallized ceramic substrates?

It can be applied to ceramic substrates, heat transfer materials, heat sinks, and other power semiconductor components.